Tag Archives: Barisan Aritmatika

02 May

Definisi Barisan Aritmatika

homesolution.co.id – Memahami garis aritmatika Sebelum kita bisa memahami arti dari garis aritmatika, kita perlu tahu lebih banyak tentang makna angka-angka Basiran. Seri numerik adalah serangkaian angka yang dibentuk sesuai aturan tertentu. Urutan aritmatika dapat didefinisikan sebagai serangkaian angka, di mana setiap pasangan batang berturut-turut berisi nilai perbedaan yang tepat, misalnya urutan angka: 2, 4, 6, 8, 10, 12, 14, …

Urutan angka dapat disebut aritmatika rowana, karena setiap akar memiliki perbedaan yang sama, yaitu 2. Perbedaan nilai yang terjadi dalam urutan aritmatika biasa diwakili oleh huruf b. Angka apa pun yang membentuk urutan deret aritmatika disebut batang. Istilah n dari urutan aritmatika dapat dilambangkan dengan simbol A, untuk menulis istilah ke-3 dari sebuah baris kita dapat menulis U3. Namun, ada pengecualian khusus untuk istilah pertama dalam urutan angka. Istilah pertama dilambangkan dengan huruf a.

Secara umum, trek aritmatika memiliki bentuk:

U1, U2, U3, U4, U5, … Un-1
a, atb, a + 2b, a + 3b, a + 4b, … a + (n-1) b

Untuk menentukan rumus untuk istilah kesekian urutan
Dalam urutan aritmatika menjadi lebih mudah untuk menemukan rumus untuk istilah-n karena memiliki nilai perbedaan yang sama. Jadi rumusnya adalah:

U2 = a + b
U3 = u2 + b = (a + b) + b = a + 2b
U4 = u3 + b = (a + 2b) + b = a + 3b
U5 = u4 + b = (a + 3b) + b = a + 4b
U6 = u5 + b = (a + 4b) + b = a + 5b
U7 = u6 + b = (a + 5b) + b = a + 6b
.
.
.
U68 = u67 + b = (a + 66b) + b = a + 67b
U87 = u86 + b = (a + 85b) + b = a + 86b

Berdasarkan model di atas, kita dapat menyimpulkan bahwa rumus n adalah urutan aritmatika:

Un = a + (n-1) b di mana n adalah bilangan alami

Memahami deret aritmatika
Seri aritmatika dapat didefinisikan sebagai jumlah total anggota dari urutan aritmatika yang selanjutnya dihitung. Misalnya, ambil urutan aritmatika 8, 12, 16, 20, 24 sehingga deret aritmia adalah 8 + 12 + 16 + 20 + 24

Perhitungan seri perhitungan masih cukup sederhana, karena jumlah log masih kecil:

8 + 12 + 16 + 20 + 24 = 80

Bayangkan, bagaimanapun, jika seri ini terdiri dari ratusan suku, akan sulit untuk dihitung, bukan? Karena itu, kita perlu mengetahui rumus untuk menghitung jumlah deret aritmatika. Rumus yang paling umum digunakan adalah:

Sn = (a + Un) × n: 2

Sebelumnya, kami sudah tahu rumus untuk menghitung Un. Jadi rumusnya bisa diubah sebagai berikut:

Sn = (a + a + (n-1) b) × n: 2

Sisipan pada seri aritmatika
Penyisipan dalam rangkaian aritmatika dapat diperoleh dengan menambahkan serangkaian kecil aritmatika lainnya antara dua suku berturut-turut dalam urutan aritmatika. Untuk menyederhanakan pemahaman, pertimbangkan contoh berikut:

Seri aritmatika awal: 2 + 8 + 14 + 20 + 26 + 32
Seri aritmatika setelah penyisipan sisipan: 2 + 4 + 6 + 8 + 10 + 12 + 14 + + 16 + 18 + 20 + 22 + 24 + 26 + 28 + 30 + 32

Perbedaan dalam seri aritmatika yang diberikan entri (b1) dapat ditentukan dengan rumus berikut:

b1 = b / (k + 1)

b1 = perbedaan dalam seri yang disertakan dengan sisipan
b = perbedaan dalam seri perhitungan asli
k = jumlah angka yang dimasukkan

Misalnya, untuk menghitung perbedaan antara seri baru dalam seri aritmatika yang saya tulis di atas adalah:

Garis awal: 2 + 8 + 14 + 20 + 26 + 32
Seri baru: 2 + 4 + 6 + 8 + 10 + 12 + 14 ++ 16 + 18 + 20 + 22 + 24 + 26 + 28 + 30 + 32

Formula: b1 = b / (k + 1)

catatan:

b = 8-2 = 6
k = 2

maka:
b1 = 6 / (2 +1)
b1 = 6/3
b1 = 2

Ini adalah penjelasan untuk definisi aritmatika dan deret seri. Pada kenyataannya, materi ini tidak terlalu sulit untuk dipelajari, kita hanya perlu menghitung setiap strain dengan lebih banyak perhatian dan perhatian sehingga hasilnya benar. Untuk memperdalam pemahaman tentang urutan dan urutan aritmatika, perlu untuk melanjutkan latihan mencoba memecahkan masalah yang terkait dengan materi yang disebutkan di atas.

Sumber: Barisan Aritmatika

Baca Artikel lainnya:

Mengenal Android Jelly Bean

Beberapa hal yang dapat merusak sistem kekebalan